class: center, middle, inverse, title-slide # Introductions to conics and circle ## Analytic Geometry ### Arturo Sánchez González ###
arturo.sanchez@upaep.mx
### August 2021 --- class: inverse, center, middle # Motivation: CONIC SECTIONS --- # Why are they called conic sections? <iframe width="900" height="535" src="https://www.youtube.com/embed/XLdIYhVwV0w?start=92&end=267" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> (Don't Memorise, 2019) --- class: clear, center, middle <img src="conics.jpeg" width="70%" /> --- class: inverse, center, middle # First approach --- class: clear, center, middle <iframe src="https://www.geogebra.org/geometry/bgevude2?embed" width="800" height="600" allowfullscreen style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe> --- # How do we define a circle? (1/2) .pull-left[ </br> </br> <span style="font-size:30px">A <span style="color:green">**CIRCLE**</span> is <span style="font-size:33px">_**the set of all points in the plane** that are <span style="color:blue">a fixed distance</span> (the <span style="color:blue">radius</span>) from <span style="color:red">a fixed point</span> (the <span style="color:red">center</span>)_ ] .pull-right[ </br> <img src="circle.png" width="110%" style="display: block; margin: auto;" /> ] --- # How do we define a circle ? (2/2) .pull-left[ <span style="font-size:23px"> As we have seen we only need **2** characteristics: </br> - <span style="font-size:27px"> the radius `\(\color{red}{r}\)`: <span style="color:blue"> it is a number</span> * <span style="font-size:25px"> Can it be negative? * <span style="font-size:25px"> What happen if `\(r=0\)`? </br> - <span style="font-size:27px"> the center `\(\color{red}{C(h,k)}\)`: <span style="color:blue">it is a point in the plane ] .pull-right[ </br> <img src="circle.png" width="110%" style="display: block; margin: auto;" /> ]