class: center, middle, inverse, title-slide # Circle centered at
C
(
h
,
k
)
## Analytic Geometry ### Arturo Sánchez González ###
arturo.sanchez@upaep.mx
### August 2021 --- class: inverse, center, middle # Quick review of the canonical equation of a circle centered at the origin --- background-color: #000000 # Equation of a circle centered at the origin .pull-left[ </br> <span style="font-size:33px;color:white"> The canonical equation of a circle of radius `\(r\)` centered at the origin is given by </br> <span style="color:yellow;font-size:40px"> `$$x^2 + y^2 = r^2$$` ] .pull-right[ </br> <img src="circleorigin.svg" width="110%" style="display: block; margin: auto;" /> ] --- class: inverse, center, middle # What happen when the center of the circle is not at the origin? --- class: clear background-color: #000000 <span style="color:white; font-size:30px"> Let's consider a circle of radius `\(\color{yellow}{r>0}\)` centered at `\(\color{cyan}{C(h,k)}\)`. <span style="color:white; font-size:30px"> Then, if `\(\color{magenta}{P(x,y)}\)` lies on that circle, `\(\color{magenta}{P}\)` **satisfies the definition of the circle**. <span style="color:white; font-size:30px"> This means that $$ d(\color{magenta}{P},\color{cyan}{C}) = \color{yellow}{r} $$ And, again, using the **distance formula** we get the equality $$ \sqrt{(\color{magenta}{x}-\color{cyan}{h})^2 + (\color{magenta}{y}-\color{cyan}{k})^2} = \color{yellow}{r} $$ --- class: clear background-color: #000000 .pull-left[ <span style="color:white; font-size:30px"> And, taking squares in both sides we get $$ (\color{magenta}{x}-\color{cyan}{h})^2 + (\color{magenta}{y}-\color{cyan}{k})^2 = \color{yellow}{r}^2 $$ This equation is called .center[ <span style="color:white; font-size:30px">STANDARD EQUATION OF THE CIRCLE WITH RADIUS `\(\color{yellow}{r}\)` CENTERED AT `\(\color{magenta}{C(h,k)}\)` ] ] .pull-right[ <img src="circlehk.png" width="110%" style="display: block; margin: auto;" /> ] --- class: inverse, center, middle # Homework --- class: clear background-color: #000000 <span style="color:white;font-size:30px"> Problem A <span style="color:white;font-size:30px"> Let's consider a circle with center at `\(C(-3,2)\)` and radius `\(11\)`. Make a draw of this circle, and determine its canonical equation and its general equation --- class: clear background-color: #000000 <span style="color:white;font-size:30px"> Problem B <span style="color:white;font-size:30px"> A pizza delivery area can be represented by a circle, and extend to the points `\((0,18)\)` and `\((-6,8)\)` (these points are on the **diameter** of this circle). Write two equations for the circle that models this delivery area. --- class: clear background-color: #000000 <span style="color:white;font-size:30px"> Problem C <span style="color:white;font-size:30px"> Determine the center and the radius, and the sketch the circle with equation <span style="color:white;font-size:35px"> $$ 3x^2+3y^2−12x+4=0$$`