class: center, middle, inverse, title-slide # Derivative rules (part 2) ## Differential Calculus ### Arturo Sánchez González ###
arturo.sanchez@upaep.mx
### April 2021 --- # Warming up <br/> <span style="font-size:28px"> Find the derivative of the following functions. <span/> .pull-left[ - <span style="font-size:30px"> `\(f(x) = \frac{1}{x^{12}}\)` <span/> <br/> <br/> <br/> - <span style="font-size:30px"> `\(g(x) = -\frac{1}{127^{12}}\)` <span/> ] .pull-right[ - <span style="font-size:30px"> `\(h(t) = \sqrt[5]{357}\)` <span/> <br/> <br/> <br/> - <span style="font-size:30px"> `\(\ell(x) = \sqrt[7]{x^{8}}\)` <span/> ] --- # Multiplying by constants <br/> <span style="font-size:30px"> Let `\(c\)` be a constant, and `\(f(x)\)` a function. <span/> <br/> <span style="font-size:30px"> **The derivative of `\(c\cdot f(x)\)`** is <span/> <br/> <span style="font-size:40px">$$\frac{d}{dx}\left[ c\cdot f(x)\right] = c \cdot \frac{df}{dx}(x) = c\cdot f'(x)$$ <span/> --- # How to find the derivative? (1/2) <span style="color:blue;font-size:25px"> Take `\(g(x) = 3x^{4}\)`. <span/> ## 1st step <span style="font-size:25px"> Identify every part of the function: Which is the constant? What is the function `\(f(x)\)`? <span/> .pull-left[ <span style="font-size:25px;color:blue"> **Constant**: `\(c =3\)` <span/> ] .pull-right[ <span style="font-size:25px;color:blue"> **Function**: `\(f(x) = x^{4}\)` <span/> ] <br/> ## 2nd step <span style="font-size:25px"> "Pull out" the constant when deriving. <span/> <span style="font-size:25px;color:blue"> `$$\frac{dg}{dx}(x) = \frac{d}{dx} \left[3\cdot f(x)\right] = 3 \frac{d}{dx}\left[ f(x) \right]$$` <span/> --- # How to find the derivative? (2/2) ## 3rd step <span style="font-size:25px"> Find the derivative of the function `\(f(x)\)`.<span/> <span style="font-size:25px;color:blue"> `$$\frac{dg}{dx}(x) = 3 \frac{d}{dx}\left[ f(x)\right] = 3 \left(4x^{4-1}\right)$$` <span/> ## 4th step <span style="font-size:25px"> Make all the necessary simplifications. <span/> <span style="font-size:25px;color:blue"> `$$\frac{dg}{dx}(x) = 12x^{3}$$` <span/> --- # Examples .pull-left[ <br/> - <span style="font-size:30px"> `\(f(x) = 10x^{6}\)` <span/> <br/> <br/> <br/> <br/> - <span style="font-size:30px"> `\(g(t) = -4t^{5}\)`<span/> ] .pull-right[ <br/> - <span style="font-size:30px"> `\(h(x) = -\frac{2}{x^{3}}\)` <span/> <br/> <br/> <br/> <br/> - <span style="font-size:30px"> `\(\ell(t) = 8 \sqrt{t^{3}}\)` ]