class: center, middle, inverse, title-slide # Derivative of polynomial functions ## Differential Calculus ### Arturo Sánchez González ###
arturo.sanchez@upaep.mx
### May 2021 --- background-image: url(images/derivativeXsquare.jpeg) background-size: contain # Power rule <!-- <center> --> <!-- <img src="images/derivativeXsquare.jpeg" alt="Derivative of x square meme" style="width:450px;height:550px"> --> <!-- <center/> --> --- # Quick review <span style="font-size:25px"> Find the derivative of the following functions. <span/> .pull-left[ - <span style="font-size:35px"> `\(f(x)=5x^{8}\)` <span/> <br/> <br/> <br/> <br/> - <span style="font-size:35px;color:red"> `\(g(t) = -\frac{5}{3t^{9}}\)` <span/> ] .pull-right[ - <span style="font-size:35px;color:blue"> `\(s(t) = 4\sqrt[6]{t^{5}}\)` <span/> <br/> <br/> <br/> <br/> - <span style="font-size:35px;color:darkgreen"> `\(v(x)=\frac{2}{865^{17}}\)` <span/> ] --- # Derivative of the sum of functions <br/> <span style="font-size:30px"> Let `\(f(x)\)` <span/> and `\(g(x)\)` be functions. <span/> <br/> <span style="font-size:30px"> Then, the derivative of `\(f(x) + g(x)\)` is <span> <span style="font-size:35px;color:blue"> `$$\begin{matrix}\frac{d}{dx} \left[ f(x) + g(x)\right] & = & \frac{d}{dx}\left[ f(x)\right] + \frac{d}{dx}\left[ g(x)\right] \\ \\ & = & f'(x) + g'(x)\end{matrix}$$` <span/> --- # First examples (1/2) <br/> <span style="font-size:35px"> Find the derivative of `\(f(x) = 4x^{2} + 5\)`. --- # First examples (2/2) <br/> <span style="font-size:35px">Find the derivative of `\(s(x) = 9+ 3x^{2} + 5x\)`. <!-- --- --> <!-- # Derivative of polynomial functions --> <!-- <br/> --> <!-- <span style="font-size:35px"> 1. A polynomial function `\(h(x)\)` is the sum of some functions. <span/> --> <!-- <br/> --> <!-- <span style="font-size:35px"> 2. We can get the derivative of **each part** of the function `\(h(x)\)`. <span/> --> <!-- <br/> --> <!-- <span style="font-size:35px"> 3. We just sum the previous derivatives to get the derivative of `\(h(x)\)`. <span/> --> --- background-image: url(images/thanosderive.jpeg) background-size: contain # You vs internet <!-- <center> --> <!-- <img src="images/derivativeXsquare.jpeg" alt="Derivative of x square meme" style="width:450px;height:550px"> --> <!-- <center/> --> --- # Dig deeper <span style="font-size:35px"> Find the derivative of the following function <span style="font-size:35px"> `$$f(x) = 3x^{4} + 8x^{3} - 7x^{2} + 12x -10^{6}$$` --- # Stretching out <span style="font-size:35px"> Find the derivative of the following function <span style="font-size:35px"> `$$s(x) = -\frac{3}{x^{4}} + 5 - 3x$$`