class: center, middle, inverse, title-slide # Derivative of transcendental functions ## Differential Calculus ### Arturo Sánchez González ###
arturo.sanchez@upaep.mx
### May 2021 --- # Warming up <span style="font-size:30px">Find the derivative of the following functions. .pull-left[ - <span style="font-size:35px;color:blue"> `\(f(t) = -3t -25^{87}\)` <br/> <br/> <br/> <br/> - <span style="font-size:35px"> `\(g(x) = 2x^{3}-7x^{5}\)` ] .pull-right[ - <span style="font-size:35px;color:orange"> `\(h(x) = 3\sqrt[9]{x^{5}} - 6\)` <br/> <br/> <br/> <br/> - <span style="font-size:35px"> `\(s(t)= \frac{4}{t^{6}} - 3t^{10}\)` ] --- # Trigonometric functions: sine <iframe src="https://www.geogebra.org/classic/ersr8ebs?embed" width="800" height="600" allowfullscreen style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe> --- # Trigonometric functions: cosine <iframe src="https://www.geogebra.org/classic/t8b27kk8?embed" width="800" height="600" allowfullscreen style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe> --- # Derivatives of trigonometric functions <span style="font-size:35px;color:darkblue"> If `\(f(x) = \sin(x)\)`, then <span style="font-size:40px;color:blue">$$\frac{df}{dx}(x) = f'(x) = \cos (x)$$ <hr> <hr> <span style="font-size:35px;color:darkgreen"> If `\(g(x) = \cos (x)\)`, then <span style="font-size:40px;color:darkred">$$\frac{dg}{dx}(x) = g'(x) = -\sin (x)$$ --- # Exponential function <iframe src="https://www.geogebra.org/classic/gzg9wjgm?embed" width="800" height="600" allowfullscreen style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe> --- # Derivative of exponential function <br/> <span style="font-size:35px"> If `\(f(x) = e^{x} = \exp (x)\)`, then <br/> <br/> <span style="font-size:45px;color:darkred">$$\frac{df}{dx}(x) = f'(x) = e^{x}$$ --- # Logarithmic function <iframe src="https://www.geogebra.org/classic/k2xujegw?embed" width="800" height="600" allowfullscreen style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe> --- # Derivative of logarithmic function <br/> <span style="font-size:35px"> If `\(f(x)=\ln (x)\)`, then <br/> <br/> <span style="font-size:45px;color:darkred"> `$$\frac{df}{dx}(x) = f'(x) = \frac{1}{x}$$` --- # Stretching out .pull-left[ - <span style="font-size:35px;color:red"> `\(h(x) = \sin (x) + e^{x}\)` <br/> <br/> <br/> <br/> <br/> - <span style="font-size:35px;color:darkviolet"> `\(s(t)= \cos (t) - \ln (t)\)` ] .pull-right[ - <span style="font-size:35px;color:blue"> `\(f(t)=-16\sin (t)\)` <br/> <br/> <br/> <br/> <br/> - <span style="font-size:35px"> `\(r(x) = x^{6} + 3\sin(x)\)` ] --- #References - For the sinus function + Castillo, J. (2013, November 4). Derivada de función seno. GeoGebra. https://www.geogebra.org/m/x8b6cduc. - For the cosine function + Castillo, J. (2013, November 4). Derivada de función coseno. GeoGebra. https://www.geogebra.org/m/DqKZbpY9. - For the exponential function + Fúneme, C. (2017, March 21). DERIVADA EXPONENCIAL. GeoGebra. https://www.geogebra.org/m/HTe3PMn6. - For the logarithmic function + Sánchez, A. (2021, May 6). Derivative of logarithmic function. GeoGebra. https://www.geogebra.org/m/k2xujegw.