class: center, middle, inverse, title-slide # A quick review of the basic rules of the derivation of functions ## Differential Calculus ### Arturo Sánchez González ###
arturo.sanchez@upaep.mx
### May 2021 --- # Basic rules of derivation (1/2) .pull-left[ ## Constant rule If `\(c\)` is a fixed number, and `\(f(x) = c\)`, then `$$\frac{df}{dx}(x) = f'(x) = 0$$` <br> <br> <hr> ## Power rule If `\(f(x) = x^{n}\)`, then `$$\frac{df}{dx}(x) = f'(x) = nx^{n-1}$$` ] .pull-right[ ## Scalar rule If `\(c\)` is a fixed number, `\(f(x)\)` is a function and `\(g(x) = c\cdot f(x)\)`, then `$$\frac{dg}{dx}(x) = c\cdot \frac{df}{dx}(x) = c\cdot f'(x)$$` <br> <hr> ## Sum rule If `\(f(x)\)` and `\(g(x)\)` are functions, then `$$\frac{d}{dx}\left[ f(x) + g(x)\right] = f'(x) + g'(x)$$` ] --- # Basic rules of derivation (2/2) .pull-left[ ## Derivative of trigonometric functions If `\(f(x)=\sin (x)\)`, then `$$\frac{df}{dx}(x) = f'(x) = \cos (x)$$` <br> <br> If `\(g(x) = \cos(x)\)`, then `$$\frac{dg}{dx}(x) = g'(x) = -\sin (x)$$` ] .pull-right[ ## Derivative of exponential function If `\(f(x) = e^{x} = \exp(x)\)`, then `$$\frac{df}{dx}(x) = f'(x) = e^{x}$$` <br> <hr> ## Derivative of natural logarithm If `\(f(x) = \ln (x)\)`, then `$$\frac{df}{dx}(x) = f'(x) = \frac{1}{x}$$` ] --- # Calling the derivative <img src="images/optimusprime.jpg" width="60%" style="display: block; margin: auto;" /> --- # More complicated functions (1/2) <span style="font-size:25px">Find the derivative of the following functions. .pull-left[ <span style="font-size:30px;color:darkred"> `\(f(x) = 3x^{5} - 4\cos(x) + 8\)` ] .pull-right[ <span style="font-size:30px;color:darkblue"> `\(g(t) = -6 \cos (t) + \frac{5}{7} \ln(t)\)` ] --- # More complicated functions (2/2) <span style="font-size:30px"> Find the derivative of the following function: <span style="font-size:35px;color:blue"> `\(s(x) = \frac{5}{4}x^{8} - 6\sin (x) -3\cos (x) + 10 e^{x} - 17 \ln (x)\)` --- # Stretching out <span style="font-size:30px"> Find the derivatives of the following functions. .pull-left[ - <span style="font-size:35px;color:darkorange"> `\(r(x) = -45^{9}\)` <br> <br> <br> <br> - <span style="font-size:30px;color:blue"> `\(m(t) = \frac{2}{t^{5}} - \frac{5}{9} + 2t^{8}\)` ] .pull-right[ - <span style="font-size:30px"> `\(g(t) = 4e^{t} - \frac{3}{4}\cos (t)\)` <br> <br> <br> <br> - <span style="font-size:27px;color:darkgreen"> `\(\ell (x) = \frac{2}{3}\ln (x) - 9\sin (x)\)` ]