class: center, middle, inverse, title-slide # Product rule ## Differential Calculus ### Arturo Sánchez González ###
arturo.sanchez@upaep.mx
### May 2021 --- # Warming up <span style="font-size:25px"> Find the derivatives of the following functions. .pull-left[ - <span style="font-size:30px;color:darkblue"> `\(f(t) = 56 -5 t\)` <br> <br> <br> <br> - <span style="font-size:27px"> `\(g(x) = 2\ln (x) -\frac{2}{3}\cos (x)\)` ] .pull-right[ - <span style="font-size:27px;color:darkred"> `\(h(t) = -5\sin (t) - \frac{4}{5}e^{t}\)` <br> <br> <br> <br> - <span style="font-size:27px;color:darkorange"> `\(\ell (x) = \frac{2}{5}x^{6} - 16 + 4\ln(x)\)` ] --- # Product rule <center> <iframe width="900" height="535" src="https://www.youtube.com/embed/YG15m2VwSjA?start=253&end=520" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </center> (3Blue1Brown, 2017) --- # Product rule </br> <span style="font-size:30px"> If <span style="color:green"> `\(f(x)\)` </span> `\(=\)` <span style="color:red"> `\(g(x)\)`</span> `\(\cdot\)` <span style="color:blue"> `\(h(x)\)` </span>, then </br> </br> </br> <center> <span style="font-size:40px"> <span style="color:green"> `\(\frac{df}{dx}(x)\)` </span> `\(=\)` <span style="color:red"> `\(g(x)\)`</span> `\(\cdot\)` <span style="color:blue"> `\(\frac{dh}{dx}(x)\)` </span> `\(+\)` <span style="color:red"> `\(\frac{dg}{dx}(x)\)` </span> `\(\cdot\)` <span style="color:blue"> `\(h(x)\)` </span> --- # Examples (1/2) <span style="font-size:30px"> Find the derivative of the following function </span> <center> <span style="font-size:35px"> `\(f(x) =\)` <span style="color:red"> `\(x^{5}\)` </span> <span style="color:blue"> `\(\cos(x)\)` </span> </span> --- # Examples (2/2) <span style="font-size:30px"> Find the derivative of the following function </span> <center> <span style="font-size:35px"> `\(s(t) =\)` <span style="color:red"> `\(e^{t}\)` </span> <span style="color:blue"> `\(\ln(t)\)` </span> </span> --- # Dig deeper <span style="font-size:30px"> Find the derivative of the following function </span> <span style="font-size:35px"> `$$h(x) = 5\cos (x) + x^{4}\ln (x) +2 - e^{x}\cos(x)$$` </span> --- # References </br> - 3Blue1Brown. (2017, May 01). Visualizing the chain rule and product rule | eoc #4. Retrieved May 12, 2021, from https://www.youtube.com/watch?v=YG15m2VwSjA&list=PL0-GT3co4r2wlh6UHTUeQsrf3mlS2lk6x&index=4