class: center, middle, inverse, title-slide # Product rule (part 2) ## Differential Calculus ### Arturo Sánchez González ###
arturo.sanchez@upaep.mx
### May 2021 --- # Product rule (again) </br> <span style="font-size:35px"> If <span style="color:green"> `\(f(x)\)` </span> `\(=\)` <span style="color:red"> `\(g(x)\)`</span> `\(\cdot\)` <span style="color:blue"> `\(h(x)\)` </span>, then </br> </br> </br> <center> <span style="font-size:40px"> <span style="color:green"> `\(\frac{df}{dx}(x)\)` </span> `\(=\)` <span style="color:red"> `\(g(x)\)`</span> `\(\cdot\)` <span style="color:blue"> `\(\frac{dh}{dx}(x)\)` </span> `\(+\)` <span style="color:blue"> `\(h(x)\)` </span> `\(\cdot\)` <span style="color:red"> `\(\frac{dg}{dx}(x)\)` </span> </span> --- # Review of last exercise <span style="font-size:30px"> Find the derivative of the following function </span> <span style="font-size:35px"> `$$h(x) = 5\cos (x) + x^{4}\ln (x) +2 - e^{x}\cos(x)$$` </span> --- --- # More examples (1/2) <span style="font-size:30px"> Find the derivative of the following function </span> <span style="font-size:35px"> `$$s(t) = -5\cos (t) \ln(t) + 4te^{t}$$` </span> --- # More examples (2/2) <span style="font-size:30px"> Find the derivative of the following function </span> <span style="font-size:35px"> `$$v(x) = -x^{4}\sin (x) + \sin (x)\cos (x)$$` </span> --- # Stretching out <span style="font-size:30px"> Find the derivatives of the following functions. .pull-left[ - <span style="font-size:35px;color:darkorange"> `\(r(x) = -27^{9}x + 36\)` <br> <br> <br> <br> - <span style="font-size:30px;color:blue"> `\(m(t) = -\frac{1}{15}t^{15} + \ln (t)\)` ] .pull-right[ - <span style="font-size:30px"> `\(g(t) = 10\sin(t) - 5e^{t}\)` <br> <br> <br> <br> - <span style="font-size:30px;color:darkgreen"> `\(\ell (x) = 0\)` ]