class: center, middle, inverse, title-slide # Quotient rule ## Differential Calculus ### Arturo Sánchez González ###
arturo.sanchez@upaep.mx
### May 2021 --- # Quick recall <span style="font-size:30px"> Find the derivative of the following function. </span> <span style="font-size:35px;color:darkorange">$$f(x) = \left( x^4 - 3\ln(x)\right)\cos (x)$$ --- # Quotient rule </br> <span style="font-size:35px"> If `\(\color{green}{f(x)} = \frac{\color{red}{g(x)}}{\color{blue}{h(x)}}\)`, then </span> </br> </br> <span style="font-size:40px"> `$$\color{green}{\frac{df}{dx}(x)} = \frac{ \color{blue}{h(x)} \cdot \color{darkred}{g'(x)} - \color{red}{g(x)} \cdot \color{darkblue}{h'(x)} }{ \left(\color{blue}{h(x)}\right)^2 }$$` </span> --- # Examples (1/2) <span style="font-size:30px"> Find the derivative of the following function. </span> <span style="font-size:35px;color:darkgreen">$$f(x) = \frac{e^{x}}{x^2}$$ --- # Examples (2/2) <span style="font-size:30px"> Find the derivative of the following function. </span> <span style="font-size:35px;color:darkgreen">$$g(x) = \tan (x)$$ --- # Let's practice! (1/2) <span style="font-size:30px"> Find the derivative of the following function. </span> <span style="font-size:35px;color:darkgreen">$$s(t) = \frac{3t^2}{\ln (t)}$$ --- # Let's practice! (2/2) <span style="font-size:30px"> Find the derivative of the following function. </span> <span style="font-size:35px;color:darkgreen">$$r(x) = \frac{3x^5 - \cos (x)}{e^{x}}$$