class: center, middle, inverse, title-slide # Chain rule ## Differential Calculus ### Arturo Sánchez González ###
arturo.sanchez@upaep.mx
### May 2021 --- # Quick recall <span style="font-size:35px"> Find the derivative of the following function. </span> <span style="font-size:40px"> `$$\color{blue}{v(t)} = \frac{5}{6x^{5}}$$` </span> --- # Chain rule </br> <span style="font-size:35px"> Let `\(\color{red}{g(x)}\)` and `\(\color{blue}{h(x)}\)` be two functions. Then `\(\color{green}{f(x)} = \color{red}{g}\left( \color{blue}{h(x)} \right)\)` is also a function and </span> </br> </br> <span style="font-size:40px"> `$$\color{green}{f'(x)} = \color{darkred}{g'}\left( \color{blue}{h(x)}\right) \cdot \color{darkblue}{h'(x)}$$` </span> --- # Examples (1/2) <span style="font-size:35px"> Find the derivative of the following function. </span> <span style="font-size:40px"> `$$\color{green}{f(x)} = \color{red}{\sin}\left( \color{blue}{x^2}\right)$$` </span> --- # Examples (2/2) <span style="font-size:35px"> Find the derivative of the following function. </span> <span style="font-size:40px"> `$$v(t) = e^{t^2 - 5}$$` </span> --- # Let's practice <span style="font-size:35px"> Find the derivative of the following function. </span> <span style="font-size:40px"> `$$\color{darkblue}{\ell(t) = \left( \ln(t) \right)^2 }$$` </span> --- # Derivative rules and practice <center> <iframe width="900" height="535" src="https://www.youtube.com/embed/YG15m2VwSjA?start=888&end=937" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </center> (3Blue1Brown, 2017) --- # References - 3Blue1Brown. (2017, May 01). Visualizing the chain rule and product rule | eoc #4. Retrieved May 12, 2021, from https://www.youtube.com/watch?v=YG15m2VwSjA&list=PL0-GT3co4r2wlh6UHTUeQsrf3mlS2lk6x&index=4