class: center, middle, inverse, title-slide # Chain rule (part 2) ## Differential Calculus ### Arturo Sánchez González ###
arturo.sanchez@upaep.mx
### May 2021 --- # Chain rule </br> <span style="font-size:35px"> Let `\(\color{red}{g(x)}\)` and `\(\color{blue}{h(x)}\)` be two functions. Then `\(\color{green}{f(x)} = \color{red}{g}\left( \color{blue}{h(x)} \right)\)` is also a function and </span> </br> </br> <span style="font-size:40px"> `$$\color{darkgreen}{f'(x)} = \color{darkred}{g'}\left( \color{blue}{h(x)}\right) \cdot \color{darkblue}{h'(x)}$$` </span> --- #More examples (1/2) <span style="font-size:30px"> Find the derivative of the following function </span> <span style="font-size:35px"> `$$\color{green}{r(x) = \left(3\cos (x) + 28 - \ln(x)\right)^5}$$` </span> --- #More examples (2/2) <span style="font-size:30px"> Find the derivative of the following function </span> <span style="font-size:35px"> `$$\color{green}{f(t) = e^{\left(\frac{6-7t}{5}\right)}}$$` </span> --- # Dig deeper (1/2) <span style="font-size:30px"> Find the derivative of the following function </span> <span style="font-size:35px"> `$$\color{green}{s(x) = \frac{4\cos\left(-7e^{x} -\ln(x) \right)}{7}}$$` </span> --- # Dig deeper (2/2) <span style="font-size:30px"> Find the derivative of the following function </span> <span style="font-size:35px"> `$$\color{green}{v(t) = -\frac{2}{3}\ln\left(\frac{1}{t} \right)}$$` </span>