class: center, middle, inverse, title-slide # Chain rule ## Differential Calculus ### Arturo Sánchez González ###
arturo.sanchez@upaep.mx
### May 2022 --- # Chain rule </br> <span style="font-size:35px"> Let `\(\color{red}{g(x)}\)` and `\(\color{blue}{f(x)}\)` be two functions. Then `\(\color{green}{h(x)} = \color{red}{g}\left( \color{blue}{f(x)} \right)\)` is also a function and </span> </br> </br> <span style="font-size:40px"> `$$\color{darkgreen}{h'(x)} = \color{darkred}{g'}\left( \color{blue}{f(x)}\right) \cdot \color{darkblue}{f'(x)}$$` </span> --- # How to apply the chain rule ? (1/3) <span style="font-size:30px"> Consider the function `\(\color{green}{h(x) = e^{x^2 - 1}}\)`. - <span style="font-size:25px"> **1st step: Identify the inner and the outer functions** </span> <span style="font-size:22px"> In this case, let's consider `\(\color{red}{g(x) = e^{x}}\)` and `\(\color{blue}{f(x) = x^2-1}\)`. </span> <span style="font-size:22px"> **How to note this?** Just answer the following question: </span> <div align='center', style="font-size:25px"> <em> Where do I have to make the first substitution? </em> </div> <span style="font-size:22px"> The answer to the previous question gives us the <em>inner function </em>. In this example is `\(\color{blue}{f(x) = x^2 - 1}\)`. </span> <span style="font-size:22px"> To get the <em> outer function </em> we just have to observe the next expression that we need to apply. In this example, after calculating `\(\color{blue}{f(x)}\)` we have to take the exponential of that value, then `\(\color{red}{g(x) = e^{x}}\)`. Observe that <span style="font-size:30px"> `$$\color{red}{g}(\color{blue}{f(x)}) = \color{red}{g}(\color{blue}{x^{2} - 1} ) = \color{red}{e}^{\color{blue}{x^{2}-1}} = \color{green}{h(x)}$$` --- # How to apply the chain rule ? (2/3) </br> - <span style="font-size:25px"> <b> 2nd step: Find the derivatives of the inner and the outer functions</b> </span> <span style="font-size:23px"> Here, we have that </span> <span style="font-size:23px"> `$$\begin{aligned} \color{darkred}{g'(x)} & = \color{darkred}{e^{x}} \\ \color{darkblue}{f'(x)} & = \color{darkblue}{2x} \end{aligned}$$` </span> <hr> - <span style="font-size:25px"> <b> 3rd step: Evaluate the derivative of the outer function in the value of the inner function </b> </span> <span style="font-size:23px"> This step means to find `\(\color{darkred}{g'}\left( \color{blue}{f(x)} \right)\)`. Then, we have that </span> <span style="font-size:23px"> `$$\color{darkred}{g'}\left(\color{blue}{f(x)}\right) = \color{darkred}{g'}(\color{blue}{x^2 -1}) = \color{darkred}{e}^{\color{blue}{x^2-1}}$$` </span> --- # How to apply the chain rule ? (3/3) </br> - <span style="font-size:25px"> <b> 4th step: Multiply the value obtained in the previous step by the derivative of the inner function</b> </span> <span style="font-size:23px"> We already know that `\(\color{darkred}{g'} \left( \color{blue}{f(x)} \right) = \color{darkred}{e}^{\color{blue}{x^2-1}}\)` and `\(\color{darkblue}{f'(x)} = \color{darkblue}{2x}\)`, then </span> <span style="font-size:23px"> `$$\color{darkgreen}{h'(x)} = \color{darkred}{g'} \left( \color{blue}{f(x)} \right) \cdot \color{darkblue}{f'(x)} = \color{darkred}{e}^{\color{blue}{x^2-1}} \left( \color{darkblue}{2x} \right)$$` </span> <hr> - <span style="font-size:25px"> <b> 5th step: Make all the necessary reductions</b> </span> <span style="font-size:23px"> In our example we only have to <em>reorder </em> the terms, but in practice is usually necessary to make more calculations. Then, our final answer is </span> <span style="font-size:23px"> `$$\color{darkgreen}{h'(x)} = \color{darkblue}{2x} \color{darkred}{e}^{\color{blue}{x^2-1}}$$` </span> --- # Examples (1/2) <span style="font-size:35px"> Find the derivative of the following function. </span> <span style="font-size:40px"> `$$\color{darkgreen}{\ell(t) = \left( \ln(t) \right)^2 }$$` </span> --- # Examples (2/2) <span style="font-size:35px"> Find the derivative of the following function. </span> <span style="font-size:40px"> `$$\color{darkblue}{r(t) = \ln \left( t^2\right) }$$` </span> --- # Dig deeper <span style="font-size:35px"> Find the derivative of the following function. </span> <span style="font-size:40px"> `$$\color{darkred}{m(x) = 7\cos\left( e^{x} - 2x^5 \right)}$$` </span>