class: center, middle, inverse, title-slide # Review of all the derivative rules ## Differential Calculus ### Arturo Sánchez González ###
arturo.sanchez@upaep.mx
### May 2022 --- # Basic rules of derivation (1/2) ## Constant rule <span style="font-size:30px"> If `\(\color{red}{c}\)` is a fixed number, and `\(\color{blue}{f(x)} = \color{red}{c}\)`, then </span> <span style="font-size:35px"> `$$\color{darkblue}{\frac{df}{dx}(x)} = \color{darkblue}{f'(x)} = \color{darkred}{0}$$` </span> <hr> ## Power rule <span style="font-size:30px"> If `\(\color{green}{f(x)} = \color{blue}{x}\color{red}{^{n}}\)`, then </span> <span style="font-size:35px"> `$$\color{darkgreen}{\frac{df}{dx}(x)} = \color{darkgreen}{f'(x)} = \color{red}{n}\color{blue}{x}\color{darkred}{^{n-1}}$$` </span> --- # Basic rules of derivation (2/2) ## Scalar multiple rule <span style="font-size:27px"> If `\(\color{red}{c}\)` is a fixed number, `\(\color{blue}{f(x)}\)` is a function, and `\(\color{green}{g(x)} = \color{red}{c}\cdot \color{blue}{f(x)}\)`, then </span> <span style="font-size:33px"> `$$\color{darkgreen}{\frac{dg}{dx}(x)} = \color{red}{c}\cdot \color{darkblue}{\frac{df}{dx}(x)} = \color{red}{c}\cdot \color{darkblue}{f'(x)}$$` </span> <hr> ## Sum rule <span style="font-size:30px"> If `\(\color{green}{f(x)}\)` and `\(\color{magenta}{g(x)}\)` are functions, then </span> <span style="font-size:35px"> `$$\color{darkblue}{\frac{d}{dx}\left[ f(x) \pm g(x)\right]} = \color{darkgreen}{f'(x)} \pm \color{darkmagenta}{g'(x)}$$` </span> --- # Derivative of trigonometric functions </br> <span style="font-size:33px"> If `\(\color{green}{f(x)}=\color{red}{\sin (x)}\)`, then </span> <span style="font-size:33px"> `$$\color{darkgreen}{\frac{df}{dx}(x)} = \color{darkgreen}{f'(x)} = \color{darkred}{\cos (x)}$$` </span> <hr> </br> <span style="font-size:33px"> If `\(\color{blue}{g(x)} = \color{magenta}{\cos(x)}\)`, then </span> <span style="font-size:33px"> `$$\color{darkblue}{\frac{dg}{dx}(x)} = \color{darkblue}{g'(x)} = \color{darkmagenta}{-\sin (x)}$$` </span> --- ## Derivative of exponential function <span style="font-size:33px"> If `\(\color{blue}{f(x)} = \color{red}{e^{x}} = \color{red}{\exp(x)}\)`, then </span> <span style="font-size:33px"> `$$\color{darkblue}{\frac{df}{dx}(x)} = \color{darkblue}{f'(x)} = \color{red}{e^{x}}$$` </span> <hr> ## Derivative of natural logarithm <span style="font-size:33px"> If `\(\color{green}{f(x)} = \color{magenta}{\ln (x)}\)`, then </span> <span style="font-size:33px"> `$$\color{darkgreen}{\frac{df}{dx}(x)} = \color{darkgreen}{f'(x)} = \color{darkmagenta}{\frac{1}{x}}$$` </span> --- # Product rule </br> </br> <span style="font-size:35px"> If `\(\color{green}{h(x)} = \color{red}{f(x)} \cdot \color{blue}{g(x)}\)`, then </span> </br> </br> </br> <center> <span style="font-size:40px"> `$$\color{darkgreen}{\frac{dh}{dx}(x)}= \color{darkred}{f'(x)} \cdot \color{blue}{g(x)} \color{darkmagenta}{+} \color{red}{f(x)} \cdot \color{darkblue}{g'(x)}$$` </span> --- # Quotient rule </br> <span style="font-size:35px"> If `\(\color{green}{h(x)} = \frac{\color{red}{f(x)}}{\color{blue}{g(x)}}\)`, then </span> </br> </br> <span style="font-size:40px"> `$$\color{green}{\frac{dh}{dx}(x)} = \frac{ \color{darkred}{f'(x)} \cdot \color{blue}{g(x)} - \color{red}{f(x)} \cdot \color{darkblue}{g'(x)} }{ \left(\color{blue}{g(x)}\right)^2 }$$` </span> --- # Chain rule </br> <span style="font-size:35px"> Let `\(\color{red}{g(x)}\)` and `\(\color{blue}{f(x)}\)` be two functions. Then `\(\color{green}{h(x)} = \color{red}{g}\left( \color{blue}{f(x)} \right)\)` is also a function and </span> </br> </br> <span style="font-size:40px"> `$$\color{darkgreen}{h'(x)} = \color{darkred}{g'}\left( \color{blue}{f(x)}\right) \cdot \color{darkblue}{f'(x)}$$` </span> <!-- --- --> <!-- # Examples (1/2) --> <!-- <span style="font-size:30px"> --> <!-- Find the derivative of the following function: --> <!-- </span> --> <!-- <span style="font-size:35px"> --> <!-- `$$\color{blue}{f(t) = 3e^{\cos(t)} - \frac{4t^5}{\ln(t)}}$$` --> <!-- </span> --> --- # Example <span style="font-size:30px"> Find the derivative of the following function: </span> <span style="font-size:35px"> `$$\color{blue}{v(x) = \frac{6x^3\sin (x)}{5e^{x} - \cos (\ln(x))}}$$` </span>